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Strengthening Anonymous Communication
via Passive Participation
Abstract: Anonymous communication networks (ACNs)
are basic building blocks for obtaining or exchanging
data in a privacy-preserving manner. ACNs suffer from
a bootstrapping problem: having few users leads to a
small anonymity set, which renders the ACN unattrac-
tive. We propose a system, CoverUp, that tackles the
bootstrapping problem for ACNs. The key idea is to
draw in non-ACN users from a collaborating website
to connect to an ACN after an informed consent via a
JavaScript snippet, thereby triggering them to passively
participate (as passive participants). CoverUp imple-
ments a privacy-preserving broadcast with a downlink
rate of 10 to 50 Kbit/s that renders the traffic of these
passive participants indistinguishable from active par-
ticipants. If this broadcast is accessed via an ACN with
a constant-rate traffic pattern, CoverUp contributes
active participants with legitimate-looking traffic, thus
helping in bootstrapping the ACN. To protect active
participants from potentially incriminating broadcast-
data, an additional application is needed to extract any
information from CoverUp’s broadcast. The indistin-
guishability guarantee of CoverUp for broadcasts holds
against global network-level attackers that control ev-
erything except for the user’s machine. In addition, as
long as active participants do not change their surfing
behavior on these websites due to CoverUp, they hide
their participation time, i.e., do not leak the time at
which they listen to the broadcast, which counters in-
tersection and statistical disclosure attacks. As passive
participation raises ethical and legal concerns for the
collaborating websites and the participants, we discuss
these concerns and describe how they can be addressed.

We extend CoverUp to bi-directional point-to-point
communication (e.g., messengers) with an up- and
downlink rate of 10 to 50 Kbit/s. Bi-directional CoverUp
can offer users of ACNs with constant-rate traffic an ad-
ditional entry point that hides their participation time
(as above). The indistinguishability for bi-directional
CoverUp requires the integrity of the JavaScript snip-
pet, for which we introduce a trusted party. We give
evidence that with a latency of 3 seconds (including
the random delays) the timing leakage is undetectable,
even after a year of continual observation. As long as
the timing leakage is undetected, bi-directional CoverUp
achieves the same properties as for broadcasts against

network-level attackers that control everything except
for the user’s machine and the trusted party.
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1 Introduction
Anonymous communication networks (ACNs) are essen-
tial building blocks for obtaining or exchanging data in
a privacy-preserving manner. Existing ACNs suffer from
two major weaknesses. First, traffic-correlation-resistant
ACNs [29, 43, 53, 54, 67, 69] have a bootstrapping
problem: few users mean a small anonymity set, and
the small anonymity set renders the ACN unattractive,
which in turn leads to few users.

Second, according to the revelations, surveillance is
mostly based on meta-data, such as source IP, destina-
tion IP, timestamps, and size of the data. While anony-
mous communication networks (ACN) are designed to
hide such metadata, even the strongest ACNs from the
literature [41, 61, 67, 69] do still reveal against global
network-level attackers the participation time: when and
the fact that a user connects to an ACN, in particu-
lar, the intention to use the ACN. Participation in an
ACN can appear suspicious and this participation time
can be used in long-term statistical disclosure attacks
to re-identify the user, which degrades the anonymity
properties of an ACN to pseudonymity [45, 47].

Both these weaknesses can be addressed by draw-
ing in passive users to participate in an ACN (as Passive
Participants), while ensuring that their traffic is indis-
tinguishable from active ACN participants. Legitimate-
looking traffic from fresh and legitimate IPs to the
ACN helps in bootstrapping an ACN by increasing the
anonymity set of the ACN. In addition, as long as ac-
tive participants do not change their surfing behavior
on these websites, they hide their intention to use the
ACN and can deny their participation, which would,
e.g., counter intersection attacks.
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We introduce CoverUp, which implements a
privacy-preserving broadcast (or message feed) with a
downlink rate of 10 to 50 Kbit/s that renders the traf-
fic of these passive participants indistinguishable from
active ones. Such message feeds are suited for the trans-
mission of information that a user does not want to
be caught reading (e.g., sensitive medical information,
leaked documents, or a leaked e-mail list of an incrim-
inating web service). CoverUp triggers visitors of col-
laborating highly accessed websites after an informed
consent to connect to a broadcast service by using a
JavaScript-snippet (JSS), thus triggering the user into
passively requesting the broadcast. We protect passive
participants from incriminating data by enforcing that
a participant’s machine never contains enough data
chunks to retrieve any information. Active listeners to
the broadcast additionally install an application that
collects these data chunks and extracts the broadcast.
CoverUp renders active and passive participants indis-
tinguishable against global network-level attackers that
control everything except for the participant’s machine.
If this broadcast is accessed via an ACN with a constant-
rate traffic pattern, CoverUp contributes passive par-
ticipants with legitimate-looking traffic, thus increasing
the ACNs anonymity set and helping in bootstrapping
the ACN. In addition, as long as the active participants
do not change their surfing behavior on these websites
due to CoverUp, they can deny their participation in
the broadcast, i.e., the time at which they listen to the
broadcast, which, e.g., counters intersection attacks.

We extend CoverUp to bi-directional point-to-
point communication (e.g., messengers), for ACNs with
strong anonymity and constant-rate traffic. Addition-
ally, passive participants send dummy traffic to the
ACN, and active users install a browser extension that
replaces dummy traffic with upstream data. To counter
the browser extension’s timing leakage, we add ran-
dom delays to the JSS. As a malicious JSS can be
used to detect the browser extension, we introduce an
additional trusted party that serves the JSS. We give
evidence that with a latency of 3 seconds (including
the random delays) the timing leakage is undetectable,
even after half a year of continual observation. As long
as the timing leakage is undetected, CoverUp for bi-
directional communication achieves the same properties
as for broadcasts but against a network-level attacker
that controls everything except for the user’s machine
and the trusted party. As long as the active partic-
ipants do not change their surfing behavior on these
websites due to CoverUp, bi-directional CoverUp of-
fers users of ACNs with constant-rate traffic and strong

anonymity an additional entry point with which they
can deny any participation in the ACN.

Previous work [42, 63] outlined how to use passive
participation to achieve a (theoretically) deniable up-
link channel in the browser. However, that work left
three major challenges unsolved. (i) How to construct
a downlink connection (using the browser) that relays
data to an external program (CoverUp-Tool) with low
latency and with minimal timing leakage? (ii) How to
relay data from an external program to the uplink con-
nection (using the browser) with low latency and with
minimal timing leakage. (iii) How much timing leakage
does an implementation of this approach entail?

1.1 Summary of contributions

• We design a deniable uni-directional channel through
an ACN to a broadcast server, the CU:Feed, that can
deliver data to an external application (challenge (i)).
This channel tolerates global network-level attacker
that control all the parties except for the users’ ma-
chines. By involving passive participants, we tackle
the bootstrapping problem.

• We extend the feed to realize a deniable point-to-
point bi-directional channel, the CU:Messenger, that
can connect to any external application (CoverUp-
Tool) via native messaging (challenge (ii)). This chan-
nel implements a denial entry point for constant-
rate ACNs that provide strong anonymity. The chan-
nel has minimal timing leakage and tolerates global
network-level attackers and a malicious entry server.

• For both channels, we implement prototypes and
carefully minimize the timing leakage (challenge
(iii)). The prototype includes a dummy entry server,
CoverUp server that serves the JSS, CoverUp ap-
plication that provides a display for the feed and
a messaging interface and a browser extension that
intercept and replaces noise data and communicate
with the CoverUp application. A naive implementa-
tion would cause a significant timing leakage. Our im-
plementation makes sure the timing leakage is small.
The CoverUp downlink and uplink rate of our pro-
totype is between 10 and 50 Kbit/s, depending on
the tolerable bandwidth overhead, and the average
latency is 3 seconds.

• We experimentally evaluate the timing-leakage of our
prototypes by measuring the differences between ac-
tive and passive users in the network timing-delays
(challenge (iii)). Using these measurements as a
model for the timing leakage, we are able to bound
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Fig. 1. Main components of CoverUp for CU:Feed. All visi-
tors of an entry server are redirected to the CoverUp server,
triggered to send (dummy) requests to the Feed server, and
then receive an encoded piece of a uni-directional message
feed (4), which is extracted (5) by active participants via the
CoverUp-Tool.

an attacker’s accuracy after half a year of continual
observation1 with 55%.

• We discuss ethical and selected legal questions w.r.t.
the entry server and the passive participants.

2 CoverUp
Passive Participation raises the challenges of how to
trigger passive participants to join an ACN (or connect
to a feed server) with unintrusive technologies, while
rendering the traffic of active and passive participants
indistinguishable.

2.1 CU:Feed

CoverUp uses for CU:Feed a lean design that lever-
ages common and widely-used JavaScript functional-
ity of browsers to trigger visitors (the passive users) of
a cooperating website (the entry server) after an in-
formed consent to produce unsuspicious cover traffic for

1 We assume that a usage pattern of at most 45 times a day,
and at most 5 hours in total (see Section 5.6).

users that are interested in the message feed (the ac-
tive users). This cooperating website (the entry server)
could be a university, a knowledge, or a news site.

The entry server (Figure 1, Step 1) embeds
in its HTML-code an iframe to a dedicated server
(the CoverUp server) with a different domain. This
CoverUp server responds with a JavaScript code snip-
pet (Step 2). This JS snippet triggers the browsers
of the visitors (Step 3) to continuously send requests
to the Feed server, who responds with CU:Feed pack-
ets (Step 4), effectively producing cover traffic to and
from the Feed server. As the CU:Feed has no strict la-
tency requirements, the browser behavior of active par-
ticipants can be kept exactly the same, thus avoiding
timing leakage. CoverUp stores each dummy packet
in the browser’s localStorage cache, and an active
participant uses a previously obtained external applica-
tion (CoverUp-Tool)2 to extract these CU:Feed pack-
ets (Step 5) from the browser cache. Hence, only this
extraction, i.e., each file-read operation, indirectly pro-
duces minimal timing leakage.

With regard to the privacy of passive participants,
the JS snippet from the CoverUp server is in an iso-
lated context and thus can not learn anything due to
the same origin policy. Hence, the CoverUp server only
learns when a participant visited the entry server, by
the requests.

The CU:Feed could contain controversial content.
To deflect potential legal harm to the passive partici-
pants, we cryptographically protect them from acciden-
tally storing parts of the CU:Feed on their disc by uti-
lizing an all-or-nothing scheme [62] and only storing a
small amount of CU:Feed packets in the local storage.
Without actively trying to, passive participants do not
have sufficient of information from which any content of
the feed could potentially be reconstructed. We discuss
the legal importance of this protection in Section 6.

The Feed server does not know which packet has
reached a user and in which order. We use error-
correcting Fountain Code (see Section 4.2) which en-
ables the assembling of CU:Feed packets in an arbitrary
order and with potentially missing packets. The authen-
ticity of the feed can be achieved via signing the feed
and assuming a PKI.

2 CoverUp-Tool could be obtained off-the-record or as part
of the CU:Feed. There, a small program including explanation
could be distributed in clear text and without Fountain-Code
which could be extracted from the cache manually. This program
assembles the full CoverUp-Tool delivered by the encoded feed.
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Fig. 2. CU:Messenger in combination with the
CU:Feed. Once the JS snippet has been received,
all participants request CU:Feed packets. An active
CU:Messenger user can use these requests to inject cus-
tom requests to the ACN by a browser extension. To
render the traffic from passive and active users indis-
tinguishable, we use TLS encryption (yellow arrows) at
(Step 4), (Step 5) and all connections of passive partic-
ipants in contrast to CU:Feed. For CU:Messenger the
dummy messages do not need to contain a feed; they
can also purely contain garbage.

Trust assumptions and attacker capabilities.
The CU:Feed tolerates a global network-level active at-
tacker that controls all parts of the system except the
active participants operating system and its running ap-
plications, as the only difference between active and pas-
sive participants is the local cache-reading CoverUp-
Tool. This attacker is active, so he can modify, drop or
delay any number of messages. As we focus on guaran-
teed anonymity and not on integrity, CoverUp is not
censorship resistant as it cannot protect from denial of
service.

Tackling the bootstrapping problem of ACNs
While CoverUp also provides participation time hiding
and thereby deniability without an ACN, sufficiently
strongs ACNs can benefit from the additional cover-
traffic that CU:Feed produces. CoverUp (active and
passive) users would use the ACN to connect to a
server that broadcasts information (e.g., podcasts or
RSS-feeds). ACNs that resistant to traffic correlation,
such as Vuvuzela [67] or DISSENT [43], would benefit
from the additional (legitimate) traffic that CoverUp
users would produce. Hence, CoverUp can help with
the bootstrapping problem of an ACN.

2.2 CU:Messenger

We extend the uni-directional CU:Feed into a deniable
entry point for bi-directional point-to-point communi-
cation with an ACN, the CU:Messenger. For the uplink
communication, our bi-directional channel requires the
active participant to additionally install a browser ex-
tension.

The protocol is almost the same as the CU:Feed.
While passive participants only transmit and receive
CU:Feed messages, also active participants transmit
dummy messages unless they need to transmit con-
tent (Figure 2, Step 1). In those cases, they use native
messaging to connect from the CoverUp-Tool to the
browser extension (Step 2). The browser extension then

replaces a CU:Feed request with a real message content
(Step 3). All messages (Step 4) are encrypted by TLS
(using randomized encryption), of the same size, and
are transmitted at regular time intervals. This renders
dummy messages and real messages indistinguishable
for the network-level adversary. Upon receiving the en-
crypted message (Step 5), the browser extension records
it and hands it over to the CoverUp-Tool which de-
crypts the content (Step 6) and sends it via native mes-
saging (Step 7) to the CoverUp-Tool (Step 8).

CU:Messenger trust assumptions. The
CU:Messenger can tolerate a global network-level at-
tacker and a malicious entry server. However, the in-
tegrity of the JS snippet has to be guaranteed; oth-
erwise an attacker can inject malicious JS code which
can detect active participants (e.g., by testing for the
existence of the extension). To enable the browser ex-
tension to check the integrity of the JavaScript snippet
with minimal timing leakage, we trust the CoverUp
server in this application and the browser extension
simply checks whether the origin of the JavaScript code
snippet is as expected. If the check fails, the browser
extension does collect or hijack any packets. We require
the ACN to provide strong anonymity 3 since other-
wise the requests of passive participants to the Feed
server can be distinguished from the CU:Messenger
connections.

It is possible to tolerate malicious CoverUp server
if we check the integrity of the JavaScript code byte for
byte. Such a check would, however, produce a signif-
icant timing leakage and is hence not an option. The
entry server can be malicious as it can not distinguish
between the active and passive participant. The entry
server may redirect to a malicious CoverUp server but
in that case, the browser extension remains inactive as

3 We assume that the ACN satisfies sender and receiver
anonymity in the sense of AnoA [31] with negligible adversary-
advantage.
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Fig. 3. The timeline of active and passive participants in their browser, starting at a request for a JavaScript code snippet from
the CoverUp Server in an iframe. The code is executed and makes continuous requests to the ACN. The attacker can measure
network timestamps of the requests (

⊕
). To decrease the leakage si of the system or browser internals, we add randomly cho-

sen delays ui to the sending times ti. There are two main sources of leakage: the set-up of the iframe context (Loading) and the
interval between the consecutive requests (Periodic). Any comprehensive computation ci inside the script or by the browser ex-
tension (for active users) is done between the sending intervals when all components are idle.

it strictly checks for the proper CoverUp server. We
assume that the target ACN acts as an ‘honest’ ACN
or that it can be implemented in a distributed fashion
so not to leak information about the communication be-
tween the users. We assume that the ACN implements a
secure channel, in particular, that it provides confiden-
tially and authenticity between the two communicating
parties. The anonymity guarantees of the CU:Messenger
can, of course, only be as good as the anonymity guar-
antees of the ACN. We assume that the ACN satisfies
sender and receiver anonymity in the sense of AnoA [31].
We consider this to be orthogonal to our work in this
paper.

2.2.1 Requirements on the ACN

Does CoverUp work with any application of ACNs?
No, CoverUp increases privacy if the receiving party
collaborates and treats dummy messages as normal mes-
sages, e.g., a messenger application could do that. The
dummies could be used to distribute a feed.

For the ACN itself, we assume sender and receiver
anonymity in the sense of AnoA [31]. We additionally
need the ACN to constitute a secure channel, in par-
ticular, it has to provide confidentially and authenticity
between the two communicating parties.

We require that the ACN handles client-side dummy
traffic in a manner that is indistinguishable from real
client traffic for a global network-level attacker, while
continuously delivering to all parties some messages (po-
tentially dummy messages) according to a fixed user-
behavior distribution (e.g., at a constant rate). In par-
ticular, CoverUp is not compatible with Tor because
traffic correlation attacks enable a global network-level
attacker to realize whether a client-side produced onion
is delivered to a recipient. In our experimental evalua-

tion, we model the ACN in the experiments as a central
mix to abstract away from ACN-specific effects.

Best suited for CoverUp are mix nets that are
based on flushing algorithms, such as threshold mix-
nets, timed, threshold pool, timed pool, timed dynamic
pool, stop-and-go, and binomial mix-nets. CoverUp
can, in particular in combination with a messenger ap-
plication improve the anonymity set, which in turn
could help to bootstrap a user base. Additionally,
CoverUp provides the property that an active partici-
pant can deny the intention to participate in the ACN.

Apart from these mix flushing algorithm, there exist
several types of mix based on transport privacy scheme.
Here we list some well known transport-private ACNs.

Store-and-Forward. This ACN requires some
transfer delay and storage at the intermediate server
(e.g., Email/XMPP). CoverUp can be plugged to such
ACNs as long as secure communication is ensured.

Onion routing. While low-latency onion routing
protocols, such as Tor, may not be good a candidate
for CoverUp, as Tor is susceptible to traffic correlation
attacker and requires a low latency. Also, CoverUp uses
a fixed user-behavior distribution (e.g., constant rate)
between the users and the ACN. This can drastically
increase the bandwidth requirement of Tor making it
infeasible for CoverUp.

DC-Nets. DC-nets executes in rounds. In every
round, a participant can either submit a secret message
or not submit anything. CoverUp would be suitable
for DC-net as all the participants can submit the mes-
sages in its round. The active participants would submit
legitimate encrypted message while the passive partici-
pants submit random bit string. DC-nets can experience
higher latency due to increase number of participants
(due to passive users).

Message broadcast. Message broadcast protocols
are suitable for CoverUp. Here all the participants re-
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ceive messages from others but only decrypt a specific
part of the broadcast if the message is intended for him.

PIR. CoverUp is compatible with PIR based
scheme but will increase the computational complexity
much fold due to the number of passive participants.

2.3 Timing leakage

Involving passive participants necessarily leads to tim-
ing leakage, as long as active participants have to use
additional applications. To read the feed, a small exter-
nal application (CoverUp-Tool) needs to extract the
CU:Feed packets from the browser cache. This appli-
cation shares system-wide computation resources with
the browser and influences its computation time, even
though it does not directly interact with the browser.
The browser’s altered reaction time constitutes tim-
ing leakage that can be observed by a global network-
attacker. The CU:Messenger requires direct interaction
with the browser, which leads to even more significant
timing leakage.

This leakage cannot be countered by introducing
a delay that extends the execution time of active and
passive parties to the same time, since a JavaScript pro-
gram on a passive participant’s machine has no way of
getting a precise value of the delay and of enforcing a
precise delay. We introduce random delays and show in
Section 5 that these random delays significantly reduce
the timing leakage. To limit the amplification of the
timing leakage, we additionally limit the number of re-
quests for which the browser extension (of an active par-
ticipant) is active. This limits the risk of malicious en-
try servers triggering excessing amounts of page-loads,
which would otherwise enable an attacker to dramati-
cally increase the number of observations and in turn
increase the timing leakage.

Figure 3 illustrates the timeline of how messages
are sent, received and processed in the browser by
CoverUp and which observations a network-layer at-
tacker can perform. The system delay si in this figure
refers to a system’s computation time (including delays
caused by the OS, the browser, and the network card).
The figure also shows when the noise is added and, in
the case of the CU:Messenger, when the communication
with the extension takes place. For the quantification of
the timing leakage, we simplify the observations and
partition the execution into two types of measurement
an attacker can perform and which we assume to be in-
dependent of each other. These intervals are the same
for the CU:Messenger and the CU:Feed. Loading mea-
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Fig. 4. Distribution of timing delays (without additional
noise) of Loading and Periodic measurements run on Linux.
Each of the graphs overlays the timing distributions of active
and passive participants.

surements denote the time between the reception of the
JavaScript snippet from the CoverUp server and the
first outgoing request to the ACN or Feed server. Peri-
odic measurements catch the time between subsequent
CoverUp requests to the ACN or Feed server.

We use this partitioning of the execution to con-
struct a histogram of Loading measurements and one of
durations of Periodic measurements. As an illustration,
Figure 4 shows the distributions of timing delays from
active and passive participants both for Loading and for
Periodic measurements in the CU:Messenger case.

3 Privacy implications
This section discusses the privacy-benefits and the lim-
its of CoverUp and the privacy-related drawbacks of
deploying CoverUp. We also discuss how we capture
timing leakage.

3.1 Potential sources of privacy leakage

We took great care to carefully design the system in
a way that the privacy leakage is minimal. We mini-
mize the leakage from the traffic with the ACN (see
Section 3.1.1), in particular the timing leakage, which
we separately quantify in Section 5. Nevertheless, us-
ing CoverUp as an entry point for an ACN can in-
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fluence the behavior of active participants toward the
entry server, which we discuss in Section 3.1.2. Addi-
tionally, a curious CoverUp server can learn the time at
which passive participants visit the entry server, which
we discuss in Section 3.1.3. Potentially, browser profil-
ing methods can be used to learn whether a particular
extension is installed [38]. However, measuring these ef-
fects is out of the scope of this work.

3.1.1 Participation deniability

The main focus of this work is to quantify the accuracy
with which active participations can be distinguished
from passive participants, as long as their browsing be-
havior on the entry server is the same (see Section 3.1.2
for more). We introduce a quantitative notion of acc-
participation deniability that captures that an attacker
can distinguish the observable communication of any
active participant from any passive one only with a cer-
tain (low) accuracy, as long as their behavior on the
entry server is the same. This section gives a high-level
idea of our quantitative notion: participation deniabil-
ity. Section 9.1 offers a more precise explanation. We
over-approximation any potential prior knowledge by
enabling the attacker to choose a browsing behavior on
the entry server and can determine what the active par-
ticipant would do in the ACN. Additionally, we grant
the attacker perfect knowledge of the timing delay dis-
tributions for the pair of the active and the passive users.

For the analysis of the CU:Feed, the attacker con-
trols the network and all parties except for the user’s
machine. For the analysis of the CU:Messenger, the at-
tacker controls the network and all parties except for the
CoverUp server and the ACN (which typically means
that only a fraction of the ACN is compromised). As
long as the behavior on the entry server is the same,
it can be shown that CoverUp only leaks timing de-
lays that are due to the browser extension and the
CoverUp-Tool. We stress that our attacker model ex-
plicitly excludes side channels like access to the power
consumption, noise generation, or any radiation leaks
(e.g., heat) of a trusted client. The technical report [9]
contains formal definitions, a precise treatment of the
attacker model, and proves the statement above.

This timing leakage is inherent to the concept of
Passive Participation, as CoverUp has very little con-
trol over the passive participants’ machines. Hence, we
use a quantitative variant of the indistinguishability no-
tion. More precisely, we say that a pair of protocols has
acc-participation deniability if a distinguisher that in-

teracts with one of these protocols (which one is ran-
domly decided) cannot decide (in the sense of classify)
with better than acc accuracy with which protocol it
is interacting. Let us consider a precise definition for
the simplified non-interactive case. We choose a defini-
tion that is inspired by the total variation, which can be
proven to be the advantage of the optimal unbounded
attacker. We consider unbounded attackers, since we ab-
stract away from any cryptographic leakage that could
be broken by an unbounded attacker and solely restrict
ourselves to timing leakage. Formally, we assume ide-
alized version of cryptography, see Section 9. For two
X,Y discrete distributions over a finite domain with a
joint domain Ω, the accuracy bound acc of X and Y is
defined as follows4

acc(X,Y ) := 1
4
∑
a∈Ω

(|pX(a)− pY (a)|) + 0.5

In other words, we provide a bound on the attacker’s
distinguishability accuracy. Specifically, n continual col-
lected observations can be modeled by considering
accn,{X−Y } := acc(Xn, Y n) for the product distribu-
tion Xn and Y n. Another way of looking at the defini-
tion is that it requires the classification accuracy of the
interaction with active versus with passive participants
to be bounded by a number close to 50%.5

3.1.2 Privacy leakage due to behavior changes

The usage of CoverUp may unconsciously influence
the behavior of active participants, e.g. if active users
spend more time on a specific entry server in order to
use CoverUp thus significantly reduce the anonymity
set. This problem is inherent to our approach and re-
quires a thorough study. As a countermeasure, one could
include a 10-minutes delay before the connection to the
ACN would start. Recent studies show that the aver-
age visiting time of e-commerce website is between 8.7
and 10.3 minutes (2016 Q1) [2, 16]. Hence, those users
that keep tabs open in the background would also with-

4 This bound acc can be translated to the total variation (also
known as statistical distance) δ as follows: δ = 2 ∗ (acc− 0.5).
5 In literature, the classification accuracy is computed as the
mean over several runs, which leads to a non-zero variance. Thus,
this empirical accuracy can be above our bound which is defined
over all possible traces of collected observations. So, the precise
statement is that, with an increasing number of runs, the classi-
fication accuracy converges towards a value that is bounded by
our accuracy bound acc.
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out CoverUp after 10 minutes not browse on the entry
server anymore.

A malicious network-level attacker or a malicious
CoverUp server could mostly block CoverUp pack-
ets to provoke a user to connect longer to the entry
server than it would normally do. A user might try to
compensate by staying longer connected to the entry
server, thereby changing its entry-server usage behav-
ior. For users that remain patient and do not change
their behavior in such a situation, this attack reduces
to a plain Denial-of-Service attack.

3.1.3 Browsing time of passive participants

Inactive users of CoverUp potentially reveal their
browsing behavior to the CoverUp server, as a mali-
cious CoverUp server can read HTTP header’s referrer
field. This leakage is inherent in our approach to use an
entry server and to utilize passive participants to pro-
duce cover traffic. While this leakage exists, we would
like to put it into perspective. Many popular websites
already leak this information to other services, such as
advertisement networks or external analytic tools, such
as Google Analytics.

A curious CoverUp server would be able to learn
the time at which a person visits the entry server. We
define the scope of the iFrame to be the entire domain.
In this way, an honest-but-curious CoverUp server only
learns the time at which a user visits the entry server
but not every single time it opens a webpage. This can
also achieve by letting the entry server keep track of
which user already has a JS file.

3.2 Privacy effects

The indistinguishability of the ACN-traffic of active and
passive participants enables hiding the act of participat-
ing in an ACN, as long as there are no suspicious changes
in the active participants’ behavior towards the entry
server (see Section 3.1.2).

3.2.1 Hiding the act of participating in an ACN

Let us consider the cases where the browsing behavior
towards the entry server does not change, as discussed
in Section 3.1.2, e.g., if an artificial delay of 10 minutes
is introduced before anything is requested via CoverUp
and the connection is only used when the tab is in the

chat chat chat

surf surf surf

chat chat chat
Leakage	w/o	

Passive

Active

Leakage

CoverUp

time

Fig. 5. Simplified depiction of how CoverUp can hiding
the act of chatting. The x-axis is the time, and the y-axis is
whether at that time surfing or chatting behavior is expected
(which assumes an strong attacker that has strong background
knowledge). Only the chatting activity which is not covered by
expected surfing behaviour creates leakage. If a user chats only
when he surfs, this kind of leakage is zero. Else if the chatting
activity is not completely covered, CoverUp still reduces the
leakage, prolongs detection time, and increases privacy com-
pared to absence of CoverUp.

background. In those cases, using CoverUp as an entry
point to an ACN can provide deniability for the act of
participating in an ACN. Unsuspicious passive partic-
ipants generate a high amount of cover traffic that is
indistinguishable from active participants.

Figure 5 illustrates this property by concentrat-
ing on the participation time alone. While an tradi-
tional perfect ACN leaks the participation time, using
CoverUp as an entry point can hide large parts and
even all of the participation time. Let us assume an at-
tacker that has perfect knowledge about a user’s surfing
and chatting behavior, as depicted in Figure 5. Even if
the urge to chat slightly influences the surfing behav-
ior (marked in Leakage), the leakage is much smaller
than directly communicating to an ACN directly with-
out CoverUp (marked in Leakage w/o CoverUp).

If the chatting urge between two participants is sta-
tistically independent, i.e. they only chat if they are ran-
domly on-line at the same time, and they do not adapt
their surfing behavior to that urge, then they are in-
distinguishable from any passive participant. The wider
CoverUp is deployed, the higher is the probability that
they are simultaneously available.

3.2.2 Bootstraping the ACN

CoverUp increases the anonymity set with the set of
passive participants, for the CU:Feed (Section 2.1), the
JavaScript code snippet would visit the Feed server via
an ACN. Note that both the active and passive partici-
pants execute the identical protocol (only change being
the active users uses the CoverUp-Tool to decode the
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feed). This makes the active and passive users indistin-
guishable to the global network level adversary.

4 CoverUp’s implementation
This section describes the CoverUp prototype imple-
mentation and presents its performance.

4.1 Preliminaries

In this section we describe existing tools and techniques
that have been used in our proposed system CoverUp.

4.1.1 Fountain Code

Fountain codes [58, 65] are a class of forward error cor-
rection (FEC) codes with the following properties
– Arbitrary sequence of encoding symbols can be gen-

erated form a given set of source symbols i.e., input
data.

– Original source symbols can be recovered from any
subset of encoding symbols with size more than a
threshold value T .

– Encoding symbols can be delivered regardless of spe-
cific order.

– Fountain codes does not show fixed code rate.
In this paper, we have used a bit-wise XOR (⊕) based

fountain code with error detection mechanism.
In a simple analogy, one can consider an empty glass

for water. A fountain emits the input data encoded in a
large amount of droplets in a steady stream. Anyone can
collect them in a glass alternately and if one thinks the
glass is filled enough, one may try to assemble the data
from the water (data stored in the glass). If the amount
of droplets is insufficient to reassemble the data, one has
to wait longer to collect more droplets and retries later.

Our specific fountain code implementation is not
optimal. There exists efficient fountain codes such as
Raptor [64] in the literature but most of them are pro-
tected by intellectual property rights.

4.1.2 All-or-nothing transformation

All-or-nothing transformation is an encryption mode in
which the data only can be decrypted if all the en-
crypted data is known. More precisely: “An AONT is an

un-keyed, invertible, randomized transformation, with
the property that it is hard to invert unless all of the
output is known.”[36].

We modified the all-or-nothing scheme proposed by
Rivest [62] which encrypts all data with a symmetric key
cryptography algorithm (in our implementation, we use
AES-128 [44]) in Cipher Block Chaining (CBC) mode
and appends a new block in which the encryption key is
XOR’ed (⊕) with the 128 bit truncated SHA-256 hashes
of all the encrypted blocks. This guarantees that one
needs all encrypted data (or at least its hash) to extract
the decryption key from last block.
1. Input message block: m1, m2, . . . , mn

2. Chose random key K R←− {0, 1}128 for AES-128.
3. Compute output text sequencem′1, m′2, . . . , m′n,m′key

as follows:
– Let m′i = Enc(K,mi) ∀ i ∈ 1, . . . , n with CBC

mode.
– Let m′key = K ⊕ h1 ⊕ h2 ⊕ . . .⊕ hn

where hi = Hi[1, . . . , 128];Hi =SHA-256(mi) ∀i ∈
1, . . . , n

– Send m′ = m′1|| . . . ||m′n||m′key
The receiver can recover the key K only after receiv-

ing all message blocks. He executes the following steps
– K = m′key ⊕ h1 ⊕ h2 ⊕ . . .⊕ hn.
– mi = Dec(K,m′i) ∀ i ∈ 1, . . . , n.

4.2 Prototype implementation

We implemented a prototype and made it available
under http://coverup.tech. The CoverUp implementa-
tion consists of five components: a CoverUp server,
a dummy mix server that acts like a message relay &
broadcaster, an external application (CoverUp-Tool),
a browser extension, and a short JS code snippet. The
CoverUp server and the mix server is implemented as a
Java Servlet running on an Apache Tomcat web server.
The external application is written in Java. The browser
extension is implemented in Google Chrome browser us-
ing the JS WebExtensions API. The JS code served by
the entry server is kept at the CoverUp server. The
CoverUp-Tool and the server implementation consists
of about 14 KLoC and the browser extension of about
200 LoC.

We make the following four assumptions about the
browser, which are in line with Chrome’s explicitly
stated security policies. 1. iframes are isolated, which
we need for the code integrity of CoverUp’s JS snip-
pet. The parent page of the iframe cannot modify the
iframe if the iframe is originated (domain) from a source

http://coverup.tech
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other than the parent [7]. 2. a JS code cannot read
from or write to another context of a different domain
source without its consent. 3. the JS code can write
a small amount of data to the browser’s localStorage
cache and this cache cannot be accessed by another JS
code which originates from a different origin. This prop-
erty is known as the “same-origin-policy” [10], and all
modern browsers claim to enforce it.

The system is parametric in the payload size and
the request rate. The payload size denotes the size of
the HTTP request and response packets which are ex-
changed between the users (both active and passive)
and the mix server. We vary this size from 3.75 to 18.75
kbytes. The request rate denotes how frequently the JS
snippet delivered from the CoverUp server executes
a request to the mix server. Our implementation uses
a rate of 3 seconds. Section 5 evaluates our choices
for these system parameters. Increasing the payload
increases the traffic overhead, in particular of passive
user’s, and reducing the request rate reduces the latency
but decreases the privacy (see Section 5). Hence, there is
a natural trade-off between the latency and privacy and
the amount of traffic overhead cause and throughput of
the system.

For the CU:Feed, all the users of the entry server re-
ceive identical broadcast content which is encoded with
a fountain code [58]. Such encoding ensures that any
out of order threshold amount of broadcast packet can
recover the data successfully. Our prototype implemen-
tation uses a XOR based fountain code (details in [9]).
The JS snippet served by the CoverUp server stores
the fountain pieces in the cache database file located
on the mass storage (known as browser localstorage).
The CoverUp-Tool collects and assembles the foun-
tain pieces from the localstorage. Our implementation
also employs an All-or-Nothing-Encryption scheme (one
similar to [62]) which ensures that one needs threshold
amount of pieces of the fountain (i.e. the entire source
data) to decrypt it. The JS snippet only keeps one foun-
tain piece in the localstorage to ensure that the pas-
sive users do not have any sensitive content on their disk
in decipherable form.

CU:Messenger. We extend the uni-directional
CU:Feed to the bi-directional CU:Messenger (recall Sec-
tion 2.2), which provides an entry point fo those ACNs
characterized in 2.2.1.

The implementation of the CoverUp messaging
protocol involves indexing the messages as POP (post
office protocol [26]) where the indexing is done by pub-
lic addresses of the clients. This public address is de-
rived from the curve25519 [34] public keys (first 48 bits

of the hashed public key). Additionally, the mix server
indexes these public addresses by the SSL identifier of
a specific HTTP request. This helps the mix server to
uniquely identify a sender/receiver from the incoming
connection request. The CU:Messenger application as-
sumes that the user added all long-term public keys of
all his trusted peers. For the cryptographic protection
for the messages, the application computes a shared se-
cret (using Diffie-Hellman key exchange) from the long-
term key pairs. The current prototype of CoverUp does
not provide forward secrecy, but one can easily inte-
grate such feature into the messenger. Whenever a new
message arrives from a source address, the mix server
keeps the message to the index of the destination ad-
dress. When a request arrives at the destination address,
the mix server delivers the message as the response and
removes the message from the previously kept index lo-
cation.

4.3 CoverUp performance

We estimate CoverUp’s overhead, latency, and
throughput to demonstrate that it can perform reason-
ably well in a real-world scenario, is feasible for deploy-
ment in large scale and does not incur an intolerable
overhead. CoverUp has three adjustable system pa-
rameters: request payload size, response payload size
and the average request frequency, which is the average
requesting rate for CU:Feed packets after adding arti-
ficial noise. A lower request frequency leaves room for
more artificial noise and thus increases privacy.

In our prototype implementation, the re-
quest/response payload size is in the range of 3.75
KB to 18.75 KB. We send a request every 3 seconds
in average for CU:Messenger and CU:Feed. Due to the
browser extension’s timing leakage (see Figure 4), we
noise the individual sending delay to reduce leakage
(see Section 5).

Computational overhead. The computational
overhead of CoverUp’s JS executed int the Browser
is negligible. Our implementation of the CoverUp-
Tool takes around 50 MB of main memory and less
than 1% CPU time. Similarly, installation of the
CoverUp browser extension incurs an almost unnotice-
able amount of memory and CPU consumption.

Traffic overhead. The traffic overhead of CU:Feed
and CU:Messenger are identical, as they are indistin-
guishable by design. The entry server’s overhead is min-
imal: Only the size of the iframe tag in its HTML code.
The passive participants’ traffic overhead depends on
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Type Throughput Latency
CU:Messenger and 10 to 50

3s + RT TCU:Feed Kbits/s

Table 1. CoverUp’s throughput for different choices of
packet length, ranging from 3.7KB to 18.75KB. We assume
that the random delays are chosen such that in the expected
case every 3 seconds, a packet is sent. RTT denotes to the
network roundtrip time from the user to the ACN and back.

the system parameters. To find suitable values for the
system parameters, we looked at the Alexa top 15 news
sites, in particular since the privacy improvements of
CoverUp’s Passive Participation approach depends on
the entry server’s regular number of visitors. The av-
erage main-page load-size of the Alexa Top 15 news
sites is around 2.2 MB and will grow in near future. A
few examples are CNN with 5.6 MB, NYTimes with 2.4
MB, HuffingtonPost with 6.1 MB, TheGuardian with
1.8 MB, Forbes with 5.5 MB, BBC with 1.1 MB and
Reddit with 0.8 MB.

CoverUp is parametric in the packet size. Once
fixed, the traffic overhead for the passive users is pro-
portional to this packet length. We generously assume a
passive participant that has a daily connected to the en-
try server for 5 hours each day. This participants would
have 22MB (∼ 5 · 60 · 60s · 1

3s · 3.75KB) to 110 MB
(∼ 5 · 60 · 60s · 1

3s · 18.75KB) of data overhead per day
and 660MB (= 30 ·22 MB) to 3.3 GB (= 30 ·110MB) per
month. For landline data flat-rates (i.e., for non-mobile
visitors), 22 MB is not significant, e.g., in comparison
to the traffic caused by streaming videos. We envision
a deployment of CoverUp not to include mobile users.
But it may be possible in near future due to the in-
creased bandwidth of the mobile networks. Section 6
further discusses the ethical aspects of using the passive
participants’ resources.

Latency & throughput. We evaluate the per-
formance of CoverUp for the duration that a tab is
opened since the usage of CoverUp is bound to the
visiting patterns of passive participants towards the en-
try server’s sites. Depending on the service that the
entry server offers, it might not be common to keep
the tab open for a long time or to visit the site more
than a few times a day. For the performance evaluation,
we generously assume that each user is connected for 5
hours per day to the entry server, which is achieved by
letting the tab open in the background. Table 1 illus-
trates the throughput and the latency during a session.
CoverUp achieves 10 to 50 Kbits/s (by varying the
fixed length packet size from 3.75 to 18.75 KB) through-

put and around 3 seconds of average delay between con-
secutive messages. As the future size of websites will
grow, CoverUp’s data usage can be adapted to deliver
a better performance. 3 second average delay is practi-
cal to execute messenger-like services. Section 5 explains
our choice for the delays.

5 Timing leakage experiments
How much privacy does CoverUp provide? To answer
this question, Section 5.1 first describes our estimator
for the classification-accuracy, Section 5.2 the experi-
mental set up, and Section 5.3 our treatment of outliers.
After fixing a usage pattern in Section 5.4, Section 5.5
explains the noise-adding process and presents the re-
sults: First, how much expected latency leads to which
privacy estimates? And second, how does the degree of
privacy changes over time? Section 5.6 discusses the lim-
its of our evaluation.

5.1 Estimating the classification-accuracy

Our goal is to give an upper bound on the classification-
accuracy for the task of distinguishing active and pas-
sive participants. This section explains the estimators
that we use. We assume that the dominant part of the
timing leakage will be visible from two kinds of measure-
ments: Loading and Periodic measurements depicted in
Figure 3. In Loading measurement, we force the iframe
to refresh on the entry server page in the browser. In
the corresponding TCP dump, we measure the tim-
ing difference between the response of the initial iframe
HTML source request and its first (“forced”) request
to the mix server. This forces Loading the extension’s
content script and thus captures any distinguishing fea-
ture (any timing delay added by the existence of the
browser extension) produced by the extension. The Pe-
riodic measurement models the scenario where the ac-
tive and passive participants load the iframe once, fol-
lowed by entry server served JavaScript generated re-
quest to the mix server and one response from the same.
In the network traffic dump, we look for the timing dif-
ference for two contiguous CU:Feed requests from the
browser. Section 5.6 discusses the choice to concentrate
on these measurements. We are going to compare the
timing measurement distributions of the passive partic-
ipant against the distribution of the active participant.
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As an estimator for the classification-accuracy, we
use the accuracy accn,type defined in section 3.1.1. This
accuracy depicts the ratio of cases where an attacker
classifies a participant correctly as active or passive after
n measurement samples collected while having perfect
knowledge of the active’s and passive’s timing measure-
ment distributions of type type ∈ {loading, periodic}. If
we assume that each request time is drawn from an inde-
pendent distribution (see Section 5.6 for a discussion),
we can bound the classification-accuracy accn using Ra-
tiobuckets: a recently introduced and publicly available
numerical tool that computes a provable upper bound
for the total variation of a given pair of discrete distri-
butions [60]. We run the Ratiobuckets-tool, on the pair
of measurements for Loading and Periodic observations
for Linux and Windows. Since the Ratiobuckets-tool is
most precise when n = 2x for some x, the number of
compositions that we use are powers of 2. Using stan-
dard composition results (see Appendix Lemma 1), we
can then bound the classification-accuracy of CoverUp
with totaln,m := [accn,loading − 0.5] + [accm,periodic −
0.5] + 0.5, after attacker that makes n Loading obser-
vations and m Periodic observations for either Linux or
Windows. Here we explicitly use the assumptions that
Periodic and Loading measurements are independent.

Definition 1 (Total variation over finite domain). Let
X,Y be two discrete distributions over a finite domain
with a joint domain Ω. Then, the total variation d of X
and Y is d(X,Y ) := 1

2
∑
a∈Ω(|pX(a)− pY (a)|).

Lemma 1. Let Xl, Xp be the Loading, respectively the
Periodic, measurement distribution of the passive user
and Yl, Yp the Loading respectively the Periodic measure-
ment distribution of the active user, all with a joint Do-
main Ω. Let further be δl be the total variation between
Xl and let Yl and δp be the total variation between Xp
and Yp. A distribution with the superscript n or m de-
notes the resulting distribution after n or m draws of
the originating distribution. Then, for all Turing ma-
chines A, if all the measurement samples are indepen-
dent (AI), Loading and Periodic measurements are in-
dependent (AII), and the measured distributions repre-
sent the accurate underlying distributions (AIII),

|Pr[b = 1 : b← A(wl, wp), wl ← Xn
l ,wp ← Xm

p ]
−Pr[b = 1 : b← A(wl, wp), wl ← Y nl ,wp ← Ymp ]|

≤ n · δl +m · δp

Let w n←− X denote n independent draws from a distri-
bution X. Let Pr[w ← X] = Pr[b = 1 : b ← A(w), w ←

X] and Pr[wl ← Xl 1 wp ← Xp] = |Pr[b = 1 : b ←
A(wl, wp), wl ← Xl, wp ← Xp]. We conclude:

|Pr[b = 1 : b← A(wl, wp), wl ← Xn
l , wp ← Xm

p ]
− Pr[b = 1 : b← A(wl, wp), wl ← Y nl , wp ← Ymp ]|

= |Pr[wl
n←− Xl 1 wp

m←− Xp]− Pr[wl
n←− Yl 1 wp

m←− Yp]|
AI
≤ |Pr[wl

n←− Xl ∨ wp
m←− Xp]− Pr[wl

n←− Yl ∨ wp
m←− Yp]|

= |Pr[wl
n←− Xl] + Pr[wp

m←− Xp]

− (Pr[wl
n←− Yl] + Pr[wp

m←− Yp])|

= |Pr[wl
n←− Xl]− Pr[wl

n←− Yl]

+ (Pr[wp
m←− Xp]− Pr[wp

m←− Yp])|

≤ |Pr[wl
n←− Xl]− Pr[wl

n←− Yl]|

+ |Pr[wp
m←− Xp]− Pr[wp

m←− Yp]|
AII
≤ n · |Pr[wl

1←− Xl]− Pr[wl
1←− Yl]|

+m · |Pr[wp
1←− Xp]− Pr[wp

1←− Yp]|
AIII
≤ n · δl +m · δp

5.2 Experimental set-up

To simulate realistic scenarios, we set up the passive
and both kinds (CU:Messenger and CU:Feed) of active
participants on 12 identical systems running Windows
10 and Ubuntu 16.04 (both x86-64 and in dual-boot
configuration) equipped with an Intel Core i5-2400 3.1
GHz CPU and 8 GB of main memory. Additionally, the
CoverUp and a dummy implementation of a mix server
run as an Apache Tomcat web server instance (works as
an ACN, a messenger relay and a Feed server) on a
separate machine in the same subnet connected by a 10
Gbps switch.

All of the communications between the server and
the browser are executed over a local GigaBit Ethernet
network. We use tshark [28] to capture all such network
traffic on the participant’s network interface. We com-
pare the distributions of timing traces produced by an
active participant to the distribution produced by a pas-
sive participant. All the experiments are conducted on
these set-ups to investigate the timing leakage of the
browser caused by CoverUp’s browser extension and
external CoverUp-Tool.

Reflecting the attacker model. The attacker
model (section 2.1) is reflected in our experiments by
taking timing traces from the perspective of the attacker
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who has access to all network traffic. Therefore, we cap-
tured the traffic on a corresponding network interface.
As a network-level attacker can change the TCP flag
for timestamps and compel the victim’s operating sys-
tem to add timestamps to the TCP headers [25], we
conduct all measurements in the settings where partic-
ipants, the CoverUp server, and the mix server are in
the same GigaBit Ethernet switched network. We calcu-
late this TCP time stamp accuracy by requesting a large
number of data chunks from the servers we configured
both on Linux and Windows operating system. In Linux
and Windows, the time-stamp accuracies are 4000µs
and 400µs respectively. While requesting, we change the
TSval field in the TCP header which forces the operat-
ing system to put the high-resolution time-stamp on the
packet. We then calculate how fast this value changes
and the rate of change is the highest resolution that the
timestamp field can achieve.

Test modes. We emulate primarily three differ-
ent user scenarios by using various combinations of
the browser extension and the CoverUp-Tool. We
use Google Chrome browser v57.0 to run our imple-
mented extension. The extension and the CoverUp-
Tool communicate via the native messaging interface
(via STDIO). Three different test modes include:
1. passive user : Google chrome with no extension and

no CoverUp-Tool running.
2. active CU:Messenger user : Google Chrome with

the extension installed and the CoverUp-Tool run-
ning which communicates with the aforementioned
browser extension by the native messaging interface.

3. active CU:Feed user : Google chrome with no ex-
tension and CoverUp-Tool running assembling
CU:Feed chunk from the browser localStorage.
These are repeated for both Loading and Periodic

measurements (Loading and Periodic measurement de-
scribed in Section 5.1).

Usage profiles. Additionally we constructed one
user profile in Linux to understand how the execution
of other browsing tabs influences the timing leakage.
To demonstrate a simple profile we additionally open
another tab in the Google Chrome which is running a
high definition (720p) video in a loop (see Figure 8).

5.3 Coping with system anomalies

Initial analysis of our timing traces reveals various un-
predictable effects. Certain measurement periods pro-
duced distributions which were significantly different

from the majority of distributions. To cope with this
we exclude such distributions.

All the aforementioned test modes (recall Sec-
tion 5.2) were conducted in measurement-chunks of 6
hours with the identical set-up. To illustrate the prob-
lem, one of our 12 machines produces around 10 such
recorded measurement-chunks, which in turn sums up
to 720 (6 ∗ 10 ∗ 12) hours of data. Each of these 10 sea-
sons per machine provides a histogram (distribution of
timing traces). Ideally, all measurement-chunks gener-
ated from at least the same machine should look very
close, since we are running and re-running the same
set-up over and over. However, around 20% (1 to 2
out of 10 measurement-chunks per machine) of all such
measurements-chunks across all our measurements pro-
duced histograms deviated from the standard shape of
the measurements significantly. The differences include
additional peaks in the histogram, significant shift of
peaks, wider/flatter/distorted peaks etc. During our ex-
periment, we experience some crashes due to some mem-
ory leakages and we attribute this anomaly to the run-
ning of operating system components, update schedule
etc. Due to the sheer complexity of modern operating
systems, it is very difficult to isolate the reason. To make
the results more robust, we stripped all such anomalies
from our data for the final privacy analysis. In particu-
lar, we cannot make reliable statements about outliers.

5.4 Usage pattern

We assume a connection pattern to the entry server of
at most 45 site-loads (which over-approximates partici-
pants that often open and close their browser) and stays
connected to the entry server for at most 5 hours per
day, which corresponds to a party that leaves the tab of
visited pages open in the background for a long time. We
assume that the usage pattern of an active participant
is identical to the visiting behavior of passive partici-
pants (see Section 5.6 for more on this). In the case of
partially behavioral overlap, CoverUp stills hides the
participation in an ACN or the connection to a Feed
server (see Section 3.2.1).

5.5 Adding noise

CoverUp does not send requests at fixed time but
rather draws delay noise from a Gaussian distribution
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Fig. 6. Latency versus upper bound on classification accuracy
for observation of half a year, with at most 5 hours of visiting
the entry server (Periodic-observations) and at most 45 time
connecting to the entry server (Loading-observations) per day.

N[0,2µ](µ, σ) with mean µ and standard-deviation6 σ =
2
10µ, restricted to the interval [0, 2µ], and adds this delay
to the minimum delay of one second. The expected de-
lay is therefore E

[
1 +N[0,2µ](µ = µ, σ = 2

10µ)
]

= 1 + µ.
To simplify and accelerate testing, however, the experi-
ments do not draw this noise. We added noise artificially
after the measurements. The effect of separately adding
the noise is evaluated in Appendix 5.6.

Latency versus privacy. Fixing the observation
time to half a year, Figure 6 plots how totaln,m increases
with decreasing delays (see Section 5.1). Using the usage
pattern from Section 5.4, renders n and m to a function
of the observation time. We pick 3s of the expected delay
to achieve an overall 55% after 6 months of continual,
and highly precise measurements of the user’s timing
patterns with daily 45 Loading observations and daily
5 hours worth of Periodic observations. We stress that
despite the limits of our evaluation, the bounds that
we present are highly over-approximated: we assume
that the attacker has very precise information about
the state of the system such as which processes are run-
ning and how they influence measurements. Moreover,
the attacker is also capable of conducting high accuracy
measurements. Section 5.5 gives a glimpse into the kind
of distortion that running another program in parallel
brings.

Length of observation vs privacy. The next an-
gle is the length of the observation versus the degree of
privacy: Figure 7. We fix the latency to 3s of expected
latency and let the number of observation grow, plot-
ting the functions accn,loading and accm,periodic. This
graph lets us study different usage behaviors, e.g., if an
e-mail service, such as Google mail or Hotmail deploys
CoverUp. In those cases, the sessions are significantly
longer than those from visitors from e-commerce web

6 There is no specific reason for this σ, but we wanted to prevent
hard noise-distribution cut-offs as they increase accn.
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Fig. 7. Number of observations versus upper bound on the
classification-accuracy for Periodic and Loading leakage, evolv-
ing over numerous observations, with a 3s expected delay.

pages. This graph shows that the leakage grows linearly
with the number of observations. While Loading needs
more time in Linux for the CU:Messenger (presumably
because it invokes the extension each time), it produces
less Periodic leakage while running.

Distorting effects of concurrent activities.
The experiments of which we saw the results so far do
not let any other program run in the background. As dis-
cussed in Section 5.3, even these kinds of measurements
we had a high degree of unpredictability. Figure 8 over-
lays the histogram of the vanilla experiments (without
any other programs running in the background) and ex-
periments where the browser is rendering a 720p video
on Linux. The experiments are conducted on Loading
events. We can clearly see that the rendering of the
video has some impact on the measurement (red line
vs. blue line in Figure 8). Hence, it will be hard for
an attacker to get such clean measurements like those
that we use in our evaluation. This is another reason
why we have some confidence that our privacy bounds
give a good impression of the degree of privacy that
CoverUp can offer, and maybe even provide a signifi-
cant over-approximation.

Privacy conclusion. For a expected delay of 3
seconds, a half a year’s worth of observations corre-
spond to around one million (220) Periodic observa-
tions and around 8192 (213) Loading observations . As
shown by our graphs, these parameters results for the
CU:Messenger and the CU:Feed under Linux and Win-
dows in an attacker’s accuracy of total8192,220 ≤ 55%,
which is only 5% better than pure guessing.
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Fig. 8. Different computation loads lead to different timing
distributions. In the blue video plots, Google Chrome addi-
tionally renders a high definition (720p) video in a separate
tab. Loading measurement. No randomly chosen delays added.

5.6 Limits of our evaluation

This section discusses the limits of our evaluation and
offers an interpretation of our evaluation. While we do
not claim that our evaluation offers provable bounds for
the privacy of CoverUp, we believe that it captures
the dominant part of the leakage of CoverUp and is a
good indicator of the privacy that CoverUp offers.

Pairs of requests. We stick to pairs of requests
since exploring all possible combinations for a higher
number of contiguous requests increases the number of
required measurements exponentially. To reduce poten-
tial effects from longer sequences of contiguous requests,
we incorporate into our recommended delays a mini-
mum of 1s between pairs of requests.

Unnoised measurements.We accelerated our ex-
periments by not adding any additional noise, as we
want to evaluate CoverUp with different amounts of
noise. During the analysis phase, we introduce noise by
computing the convolution of the resulting histograms
with ideal uniform noise. To justify this we additionally
construct an experiment with two scenarios: one with
added artificial noise and another without where we add
the artificial noise after the samples are collected.

Recall that we simulated the additional noise by
adding it to the measurement result. To justify this
procedure, we conducted separate experiments, sim-
ilar to the periodic scenario, but instead of wait-
ing 1000ms for the next droplet request, we drew in
JavaScript a uniformly distributed random number (us-
ing Math.random()) and expanded it in an affine way
such that an interval ranges from 200ms to 1800ms.
Additionally, we stored each of the drawn random num-
bers together with an epoch time stamp. Later in the
analysis step, we subtracted the corresponding random
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Fig. 9. Statistical Independence using uniform noise: Dis-
tance: 1.8%

number from the network dump measurement. This pro-
cedure produced measurements artifacts, caused by the
time resolution of our system (which lies slightly un-
der 1us). As we are only interested in the fact whether
artificially adding the noise after the experiment is in-
dependent of directly adding the additional noise in the
experiments, we clustered close histogram bars that are
not separated by a significant gap. Figure 9 shows the
resulting distribution. The statistical distance of these
two distributions is 1.8% which is an acceptable value.

Browser profiling. Potentially, browser profiling
methods can be used to learn whether a particular ex-
tension is installed (and/or active) or a specific applica-
tion is running [38]. To evaluate the effect of usage be-
havior, we introduce a profile described in Section 5.2.
Figure 8 illustrates how the shape of the distributions
over request-differences change. The experiments were
conducted in Linux for Loading events by running a
720p video on the browser in a loop.

Browsing privacy. Inactive users of CoverUp
potentially reveal their browsing behavior to the
CoverUp server, as a malicious CoverUp server can
read HTTP header’s referrer field. This leakage is inher-
ent in our approach to use an entry server and to utilize
passive participants to produce cover traffic. While this
leakage exists, we would like to put it into perspective.
Many popular websites already leak this information to
other services, such as advertisement networks or exter-
nal analytic tools, such as Google Analytics.

Neglecting the generalization error. We are
aware that it would be useful to have a bound on the
generalization, but the limited amount of our experi-
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ments does not enable us to properly bound the gener-
alization error with standard techniques.

6 Ethical considerations
“Forced” participation has to be carefully implemented
to avoid ethical.We address potential ethical consider-
ations that stem from triggering visitors of some web-
page into passively participating in an ACN. Our work
received formal approval of our Institutional Review
Board (IRB).

Are computation and bandwidth resources of passive
participants unwittingly utilized? No, only after an in-
formed consent does CoverUp turn an entry server vis-
itor to a passive participant, hence utilizing the compu-
tation and bandwidth resources. Additionally, passive
allocation of resources is nothing unexpected for a vis-
itor of a webpage; it is already done by advertisements
or QoS scripts, such as Google Analytics. Consequently,
webpages that incorporate CoverUp would not cause
unexpected behavior on a visitor’s browser. The com-
putational overhead of CoverUp is negligible and the
bandwidth overhead for a visitor would be around 20.25
MB per day (for a throughput of 10 Kbit/s), which is
negligible compared to the data load of video streaming
services.

Is CoverUp harmful to passive participants? No,
CoverUp utilizes standard browser functionality.

Does CoverUp store potentially incriminating data
on the machine of passive participants? No, we carefully
incorporated an All-or-Nothing scheme such that pas-
sive participants never contain any useful information
on their machine, as long as they do not actively ex-
tract and collect the CoverUp data packets from the
browser’s local storage.

Does CoverUp trigger passive participants to open
potentially suspicious connections? After an informed
consent, CoverUp does trigger a connection to the
ACN, which some parties (e.g., an employer) could in-
deed view as suspicious.7 We do not consider this an
ethical issue since this connection is only opened after
information about this connection was provided and an
active consent was received.

Does the CoverUp server collect information about
the browsing behavior of the entry server’s visitors? No,

7 We assume that the CU:Feed connects to the Feed server via
an ACN.

while each iframe request of every entry server’s visitor
includes the visitor’s IP address, the CoverUp server
does not collect or store this information in any form
and immediately deletes it.

7 Selected legal questions
One of the challenges in answering the question whether
the provision of CoverUp and the upload of the
JavaScript code by the entry server is legal or not (and
many other questions evolving around the use of the
Internet) is that, whereas the Internet functions glob-
ally, law mostly [8] remains limited by territory be-
cause sovereign states put their own legislation into ef-
fect [3, 6, 17]. The legal provisions and possible offenses
that apply to the technical setup of CoverUp, differ
from country to country. Moreover, as law is not an ex-
act science and definite legal statements are made by
the courts, we conclude the legal discussion herein with
an assessment that we consider probable.

In this section we limit the legal analysis to a se-
lected discussion on whether the activity of the provider
of the entry server could qualify as cybercrime offense.
We do not, for instance, analyse offenses by the provider
of the CoverUp server or of the ACN, or cover aiding
and abetting.

Many countries enforce their own laws and have
their own (territorial) jurisdiction, many countries,
among others the EU member states and the USA, have
ratified [5] in the Convention on Cybercrime [8] (CCC) –
the international treaty on crimes committed via the In-
ternet and other computer networks. This international
treaty criminalizes, among others, illegal access (Art. 2
CCC), data interference (Art. 4 CCC), and misuse of
devices (Art. 6 CCC).

7.1 Passive participants

Illegal access. Illegal access (Art. 2 CCC) penalizes
the entering of a computer system but does not include
the mere sending of an e-mail message or a file to a
system. The application of standard tools provided for
in the commonly applied communication protocols and
programs is not per se “without right”, in particular not
if the accessing application can be considered to have
been accepted (e.g. acceptance of cookies [12–14, 23] by
client). However, a broad interpretation of Art. 2 CCC
is not undisputed (refer [8], §44 - 50).
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Upon request, the entry server delivers a webpage
that contains an iframe request for the CoverUp server,
which then delivers the JavaScript to the browser for the
download of the packet. Not only does the entry server
merely send a file (pointer) to the browser, but the re-
quest to download the JavaScript from the CoverUp
server is standard browser functionality for communica-
tion. The same would happen if the entry server were
financed by online advertising: upon request the entry
server would deliver a webpage pointing to the advertis-
ing server and trigger the download of the advertising
text or pictures to the browser. As this is a standard
online process, we conclude that even in a broad inter-
pretation of Art. 2 CCC, the provider of the entry server
should not be illegally accessing the browser.

Data interference. Data interference (Art. 4
CCC) penalizes the damaging, deletion, deterioration,
alteration, or suppression of computer data “without
right”. This provision protects a computer device from
the input of malicious code, such as viruses and Trojan
horses as well as the resulting alteration of data. How-
ever, the modification of traffic data for the purpose of
facilitating anonymous communications (e.g., the activ-
ities of anonymous remailer systems)should in princi-
ple be considered legitimate protection of privacy (re-
fer [18, 20–22], [15, Recitals(1) and (35)]), [19, Art. 13],
and, therefore, be considered as being undertaken “with
right” [8, §61].

CoverUp does not damage, delete, deteriorate, or
suppress data on the participant’s client. However, it
does alter the data on the hard disk: on the one hand the
webpage with the iframe uses disk space and thus modi-
fies the participant’s data; on the other hand CoverUp
triggers the download of the JavaScript code and sub-
sequently the packets from the ACN to the passive par-
ticipant’s browser, which again uses disk space and thus
modifies the data anew.

However the explanatory report to the Convention
on Cybercrime foresees that the file causing data inter-
ference be “malicious”. Code is malicious if it executes
harmful functions or if the functions are undesirable.

As concluded above, the JavaScript code utililized
standard core browser functionality. Thus from a tech-
nical viewpoint, CoverUp is not harmful. Therefore in
our view the provider of the entry server not does cause
any malicious data interference. We advocate that Art.
4 should not apply to the provision of the webpage with
the iframe by the provider of the entry server.

Misuse of devices.Misuse of devices (Art. 6 CCC)
penalizes the production, making available, or distribu-
tion of a code designed or adapted primarily for the

purpose of committing a cybercrime offense, or the pos-
session of such a computer program. It refers to the
commission of “hacker tools”, i.e. programs that are e.g.
designed to alter or even destroy data or interfere with
the operation of systems, such as virus programs, or pro-
grams designed or adapted to gain access to computer
systems. The objective element of offense comprises sev-
eral activities, e.g. distribution of such code (i.e. the ac-
tive act of forwarding data to others), or making code
available (i.e. placing online devices or hyperlinks to
such devices for the use by others) [5, §72].

One of the main questions relating to the misuse of
devices is how to handle dual use devices (code). Dual
use means in our case that the JavaScript code could be
used to download legal content, e.g. political informa-
tion, as well as illegal content, e.g. child pornography.
Should Art. 6 CCC only criminalize the distribution or
making available of code that is exclusively written to
commit offenses or should it include all code, even if pro-
duced and distributed legally? Art. 6 CCC restricts the
scope to cases where the code is objectively designed pri-
marily for the purpose of committing an offense, there-
byusually excluding dual-use devices [5, §72–§73].

First, it is important to note that CoverUp was
not designed primarily for the purpose of committing
an offense. While the main purpose of CoverUp is to
protect privacy, it can be used to conceal illegal activi-
ties.

Second, can the download of criminal information
be considered an illegal activity if the information is
encrypted? Here we draw a legal analogy to data pro-
tection law. Data relating to an identified or identifiable
person is considered personal data [15, Art. 2(a)], [24,
Art. 4(1)]. If a person is identifiable or identified, data
protection law applies. However, if the personal data are
pseudonymized or anonymized, then data protection law
might not apply anymore because the (formerly identi-
fiable or identified) person cannot longer be identified.

Recital (83), Art. 6(4)(e), 32(1)(a) and 34(3)(a) of
the new General Data Protection Regulation8 stipulate
that encryption renders the personal data unintelligible
and mitigates the risk of infringing the new regulation.

By applying this data protection principle to the
encryption of data by CoverUp we can argue that the
data provided by the ACN in the packets are not in-
formation because the data is unintelligible. Not only
does the passive participant not have sufficient data to
reassemble the packet to a whole, but the data are en-

8 Regulation (EU), applicable as of 25.5.2018
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crypted in such manner that it is impossible to make any
sense of it. At least from a theoretical viewpoint the en-
cryption of CoverUp cannot be breached. We therefore
conclude that the JavaScript code, with regard to the
passive participant, does not qualify as dual use device
because even if it is used for illegal purpose. The data
transmitted remain unintelligible and therefore do not
qualify as information. Moreover, the JavaScript code,
with regard to the active participant, can be qualified
as dual use device because the encrypted and unintelli-
gible data are decrypted and reassembled to intelligible
information.

Legal conclusion. We discussed the applicability
of Art. 2 (illegal access), 4 (data interference), and 6
(misuse of device) CCC to CoverUp. We conclude that
the provider of the entry server is probably not ille-
gally accessing the participant’s browser by applying
CoverUp; that the provider of the entry server proba-
bly does not cause any malicious data interference; and
that the use of CoverUp with regard to the passive par-
ticipant does not qualify as misuse of device. In regard
to the reassembly of the packets to a meaningful whole,
if the information is illegal, CoverUp might qualify as
dual use device and fall under Art. 6 CCC. We conclude
that at least with regard to the risk of indictment pur-
suant to Art. 6 CCC it seems advisable that the provider
of the entry server does not provide the JavaScript code
for download.

7.2 Entry servers

A participant is dependent on Internet service providers
(ISP). The question arises whether an (ISP) should be
liable for illegal Internet activities of its subscribers. In
the following we discuss legislation and case law on the
ISP’s liability in two different jurisdictions: the EU and
the USA.For this discussion it is important to differenti-
ate among the various types of ISPs, for instance access
providers, hosting providers, and content providers [68].

European union. In the European Union, liability
of ISPs has been regulated in the E-Commerce Direc-
tive [11]. Generally, providers shall not have any obli-
gation to monitor the information which they transmit
or store, or to seek actively facts or circumstances in-
dicating illegal activity [11, Art. 15 (1)]. According to
the directive, access providers acting as “mere conduits”
shall not be liable for the information transmitted, on
the condition that they do not initiate, select the re-
ceiver of, or select or modify the information contained

in the transmission [11, Art. 12 (1)].9 Caching providers
(efficiency transmitters) shall not be liable for the au-
tomatic, intermediate and temporary storage of infor-
mation, on the condition that they do not modify the
information; comply with access regulations and indus-
try standards for updating the information; do not in-
terfere with the lawful use of technology; and act ex-
peditiously to remove information if removed from the
initial source [11, Art. 13 (1)]. Hosting providers shall
not be liable for the information stored on their servers,
on the condition that they are unaware of illegal ac-
tivity or information or acts expeditiously to remove or
disable access to the illegal information [11, Art. 14 (1)].

With regard to the obligations of a hosting provider,
the European Court of Justice decided in SABAM v
Netlog10 that, among other directives, the E-Commerce
Directive precluded a national court from issuing an in-
junction against a hosting service provider which re-
quires it to install a system for filtering (a) informa-
tion which is stored on its servers by its service users,
(b) which applies indiscriminately to all of those users;
(c) as a preventative measure; (d) exclusively at its ex-
pense; and (e) for an unlimited period; which is capable
of identifying IP-infringing content.

USA. Similarly, in the United States there are limi-
tations on liability relating to material online [1]. There
are statutory limitations for transitory communications
(i.e. access provider, “mere conduit”) [1, Section 512(a)],
system caching (i.e. storage for limited time) [1, Section
512(b)], information residing on systems or networks at
the direction of users (i.e. hosting) [1, Section 512(c)],
and information location tools (i.e. search engines or
hyperlinking) [1, Section 512(d)].

With regard to the obligations of a hosting
provider [1, Section 512(c)], the United States Court
of Appeals for the Second Circuit, by referencing UMG
Recordings, Inc. v. Shelter Capital Partners LLC, 667
F.3d 1022 (9th Cir. 2011), argued that “[t]he Court of
Appeals affirmed [...] that the website operator was enti-
tled to safe harbor protection. With respect to the actual
knowledge provision, the panel declined to ‘adopt [...] a
broad conception of the knowledge requirement,’ id. at
1038, holding instead that the safe harbor ‘[r]equir[es]
specific knowledge of particular infringing activity,’ id.
at 1037. The Court of Appeals reach[ed] the same con-

9 With regard to the German liability for interference (“Stör-
erhaftung”) according to Sommer unseres Lebens (I ZR 121/08),
see also decision by the ECJ in Mc Fadden (C- 484/14).
10 ECJ C-360/10.
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clusion’ [..] noting that [w]e do not place the burden of
determining whether [materials] are actually illegal on
a service provider.’ Id. At 1038 (alterations in original)
(quoting Perfect 10, Inc. v. CCBill LLC, 488 F.3d 1102,
1114 (9th Cir. 2007))”. Hence, the 2nd Circuit Court
concluded, among others, that 17 U.S.C. §512(c)(1)(A)
requires knowledge or awareness of facts or circum-
stances that indicate specific and identifiable instances
of infringement.

Legal conclusion. The entry server is probably
not an access provider, maybe a caching provider and
presumably a hosting provider. In the latter case two
points seem relevant: (i) by whom the information is
stored on the entry server and (ii) the entry server’s
knowledge of any (illegal) activity.

First, depending on how the entry server’s webpage
is set up, the JavaScript code may be stored by the entry
server itself or by a third party. Only in the latter case
does the provider’s liability privilege apply, because if
the JavaScript code is stored on the entry server by the
entry server itself, then it is neither an access, nor a
caching nor a hosting provider, but probably a content
provider (assuming that the JavaScript code is qualified
as content). The ISP liability privilege does not apply
to content providers.

Second, if the JavaScript code is stored by the entry
server itself on the entry server, then the entry server
obviously has knowledge of the content. The ISP lia-
bility privilege should not apply. If the JavaScript code
is uploaded by a third party (as done in CoverUp) to
the entry server, and the entry server therefore has no
knowledge about the content, then under EU and US
legislation and case law the entry server should not be
held liable for the JavaScript code.

8 Deployment
We have witnessed a steady rise of concern regarding
privacy. Such includes state backed surveillance, web
based services collecting huge amount of private infor-
mation and discrimination of citizens who access sensi-
tive materials such as leaked documents. In recent years,
a number of countries reformed their privacy protec-
tion laws, which specifically aims to provide protections
against the misuse of citizens’ private data. One major
example is European Union’s EU-GDPR and the sur-
veys accompanying it [4, 27] shows that there is a need
for privacy-preserving systems. Anonymous communi-
cation networks (ACN) is the basic building blocks for

many privacy preserving protocols. CoverUp provides
a strong privacy guarantee for hiding the intention. Our
proposed forced participation technique achieves this by
hiding the active users in the traffic generated by the
inactive users. Existing systems can easily incorporate
CoverUp by setting up the entry server in their own
service. The code integrating is effortless and requires
almost no modification. The host servers only have to
include an iframe pointing to the CoverUp server.

9 Proving participation deniability
This section defines the privacy notion that CoverUp
achieves: no attacker can tell whether a participant in a
protocol is active or passive (Section 9.1).

9.1 Defining participation deniability

As a worst-case assumption, the attacker has complete
knowledge about the running time distributions of the
active and the passive participants. The attacker is able
to control the content sent by the entry server (i.e., the
entry server is untrusted) and has full control over the
network link (on the Internet Protocol level). In partic-
ular, the attacker is able to request arbitrary data and
execute arbitrary JavaScript code in the web browsers
context of the entry server and is able to drop, modify,
and resend any messages sent over the network.

We over-approximate potential previous knowledge
by granting the attacker the capability to control
the participant’s behavior. In particular, this over-
approximation avoids the need to deal with various user
behavior profiles, since the attacker can choose the user
profiles that maximize the leakage.

Of course, a active participant needs a more ex-
tended set of input commands than an passive partic-
ipant. To avert any leakage to the attacker, the com-
mands for both kinds are like for the active one, while
for the passive the surplus is simply ignored. Because
this attacker might stress the OS infinitely, we restrict
the input rate of these commands to a fixed rate tuser.
Timing leakage is crucial for the notion that we con-
sider. Since interactive Turing machine, or other compu-
tation and network models, such as the UC framework,
do properly capture timing leakage, we use TUC [32] (a
refinement of UC) as network and computation model
(see Appendix A for a brief description). TUC enables
a normal execution of all protocol parties and an adver-
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sary that can measure timing leakage. As the accuracy
of a TUC adversary is not limited per se and in many
deployed operating systems the accuracy of the times-
tamps is limited to around 1 microsecond11, we intro-
duce a limit tnet on the sample rate of the attacker.

The challenger Similar to other cryptographic
definitions, we use a machine, called the challenger Ch,
to capture the capabilities and the restriction to the
attacker and to define the task that has to be solved
by the attacker. This challenger chooses one out of two
protocols at random and runs it, one πI modelling invol-
untary participant or and the other πV modelling volun-
tary participant. The challenger is located between the
attacker and the participant, handles all their commu-
nication, enforces all restrictions (input rate tuser and
sampling rate tnet). The attacker can intercept any net-
work traffic and controls the entry server. The attacker
now has to guess, which scenario the challenger runs. We
let the attacker send commands that specify the partic-
ipant’s interaction with the system. As we quantify over
all probabilistic poly-time bounded (ppt) machines, we
implicitly assume that the attacker has full knowledge
about πI and πV .

Algorithm 1 describes the challenger
Ch(π, tnet, tuser). We consider a message in form of
a pair (m, p) where m is the message itself in bitstring
format and p denotes to the port where m arrives. In
our definition there can be three types of ports:
1. u : Denotes to the user port where there can be

incoming and outgoing data flow from the browser
due to user activities. We denotes the activities as
Command (A) and Command (B) which relates to
mouse click events on the website of the entry server
and the CoverUp/mix server (specified in the com-
mand), respectively.

2. N : Denotes to the network port where network
leakage in terms of traffic pattern is observed.

3. CS : This the port where the entry server sends
and receives data. The outgoing data can be the
programmed java script codes and HTML pages.
The incoming data consists of the response from
the java script code and the HTML page.
The challenger Chb relies on two FIFO queues

QNET and QBrowserπ
for input which are populated

by network traffic and the browser Bb respectively. Chb

11 Often the timestamp also contains nanoseconds but the ac-
curacy is nevertheless in microseconds.

Algorithm 1: Challenger Ch(πb, tnet, tuser)
Notation: Ch challenger, A adversary, πb protocol

(b ∈ {I, V }), p ∈ {network, user} the
interface over which the message comes

1 Upon Initialization
begin

2 Initialize two empty FIFO queues Qnet, Quser

3 Upon Receiving m from the A over interface p
begin

4 if p = user then
5 Quser.push(m)

6 else if p = network then
7 Qnet.push(m)

8 Invoke every tnet point in time begin
9 (m1,m2)← Qnet.pop()

10 Send (m1,m2) over the network port to πb

11 Invoke every tuser point in time begin
12 (m1,m2)← Quser.pop()
13 Send (m1,m2) as user inputs to πb

14 Whenever πb outputs m over the interface p begin
15 Send (m, p) to A

polls to both of these queues in a predefined time inter-
val tq.
Example 1: Instantiating the model with CoverUp. In
the case of CoverUp, the scenario πI constitutes a
Chrome browser together with our external application,
which visits an entry server. The attacker determines
what the participant does on the entry server. Only the
uni-directional without any external application is used.
In the other scenario πV , the CoverUp extension is in-
stalled in the Chrome browser, together with our run-
ning external application. Here, the user utilizes the ex-
ternal application explicitly. The attacker tries now to
distinguish to which scenario applies to a specific par-
ticipant. To accomplish that, he gives commands to the
participant as it would be in πV . If it is in πI , the addi-
tional commands just get ignored. Appendix 9.2 gives a
full description of πI and πV . �

Along the lines of other indistinguishability-based
definitions, we compare the probabilities of two inter-
actions: a ppt machine A (the attacker) either interacts
with the challenger that internally runs (i) πI or (ii) πV .
We require that no ppt attacker A can distinguish case
(i) from case (ii). Technically, no ppt machine A shall
have a higher probability to output (as a final guess) 0
in case (i) has more than a distance δ away from the
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probability that A outputs (as a final guess) 0 in case
(ii). In contrast to other indistinguishability-based defi-
nition and similar to differential privacy [49], we do not
require δ to be negligible in the security parameter, as
we also want to capture systems that do have a small
amount of leakage, such as CoverUp, which is how-
ever even after thousands and even millions of attacker-
observations still small. Throughout the paper, we use
the notion of an attacker’s accuracy, i.e., his probabil-
ity to guess correctly. A notion that is also used in the
context of classifiers. The δ from the defintion below
can be converted into the typical notion of an attacker’s
advantage by advantage = (δ − 0.5) · 2.12

Definition 2. A pair of protocols (πI , πV ) has δ-
participation deniability if and only if there is a δ such
that for all probabilistic poly-time machine A we have∣∣∣∣Pr[0← 〈A | Ch(πI , tuser, tnet)〉)]

− Pr[0← 〈A | Ch(πV , tuser, tnet)〉)]
∣∣∣∣ ≤ (δ − 0.5) · 2

where b ← 〈X | Y 〉 denotes the interaction between the
interactive machines X and Y with output b. This inter-
action stops whenever X stops, and the output b of the
interaction is the output of X after it stopped.

Recall that the notion of differential privacy additionally
includes a multiplicative factor ε. While our definitions
and results could be generalized to such a multiplicative
factor ε – ending up with computational differential pri-
vacy –, we omitted the ε (thus concentrating on ε = 0)
in order to simplify the interpretation of our definition
and results.

Related formalisms. The total variation (some-
times called statistical distance) δ that we require is
equivalent to (ε, δ)−Differential Privacy with ε = 0.
Moreover, the total variation accuracy is connected to
Kullbeck-Leibler divergence by Pinsker’s inequality, and
hence to relative entropy.

12 For a set of true positives TP, false negatives FN, true neg-
atives TN, and false positives FN, Definition 2 can be rewritten
as |TP |/|TP ∪ FN | − |FP |/|FP ∪ TN | ≤ δ. For accuracy =
|TP ∪ TN |/|TP ∪ FN ∪ FP ∪ TN |, if |TP ∪ FN | = |TN ∪ FP |
then we get 2 ∗ accuracy − 1 ≤ δ.

9.2 Description of protocols

We use two protocols namely πI and πV to denotes
the sequence of executions performed by the inactive
and active participants respectively. A protocol π is
defined as a quadruplet {B,Π, SCoverUp, Smix}. Where
B,Π, SCoverUp and Smix denotes a browser, a set of op-
erations, CoverUp server and the mix server respec-
tively. A browser B is defined as an interactive Turing
machine. B has three ports namely user port, network
port and output port. B takes input from a user (and/or
an attacker A) via the user port. All requests and re-
sponses to and from remote servers such as SCoverUp and
Smix is done via the network port which provides a se-
cure communication channel. The output port is utilized
to send any output result to the user e.g. data received
from Smix. Additionally a browser can also execute a
JavaScipt code which in turn can send request over net-
work to a specific recipient (e.g. Smix) via the network
port. Upon receiving response, browser can send it to
the user (and/or the attacker). We specify two instance
of browser, namely BI and BV corresponding to πI and
πV respectively. The browser instance BV is BI with
an extension E installed in it. E is also an interactive
Turing machine which introduces additional transitions
to B. Hence BV = BI‖E.13

9.3 Reduction to timing leakage

Games 1-3 describe hybrid games which incorporate
small changes over Game 0 or Ch(πI) (protocol executed
by passive participants) and transform the protocol to
Ch(πV ) (protocol executed by active participants) by
adding up a small amount of delay.

Lemma 2. Assume that πI and πV established a se-
cure channel in TUC (i.e., TLS in the real implementa-
tion).14 Assume that all cryptographic primitives in πV
and πI and secure in the TUC framework. Let πI + Γ
be some protocol that behaves just like πI , except that it
incurs additional delays, which add up to Γ. Then, there
is a Γ such that πI + Γ and πV are indistinguishable in
the sense of Definition 2 with a δ = µ for a function
µ that is negligible in the security parameter. Moreover,

13 ‖ is defined as the combination of two state machine as
described in https://www.cs.cmu.edu/afs/cs/academic/class/
15671-f95/www/handouts/shared-memory/node1.html
14 Formally, a functionality FSCS , as in the UC framework,
but secure in TUC (see Appendix A).

https://www.cs.cmu.edu/afs/cs/academic/class/15671-f95/www/handouts/shared-memory/node1.html
https://www.cs.cmu.edu/afs/cs/academic/class/15671-f95/www/handouts/shared-memory/node1.html
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Protocol 1 BI : abstraction of the browser in πI
(feed)
1 Upon Connecting to the entry server and receiving an

iframe
begin

2 Compose request r from the iframe
3 Send r to CoverUp server via secure channel

4 Upon Receiving a JavaScript code code from CoverUp
server
begin

5 Execute code begin
6 hf ← feed
7 data← {0}k

8 send (hf‖Data) via the secure channel to the
mix server

9 Upon Receiving D from mix server over the secure
channel
begin

10 Send D to the user

Protocol 2 BV : abstraction of the browser in
πV (bi-directional channel)
1 Upon Connecting to the entry server and receiving an

iframe
begin

2 Compose request r from the iframe
3 Send r to CoverUp server via secure channel

4 Upon Receiving a JavaScript code code from CoverUp
server
begin

5 Execute code begin
6 Data← readBiDirectionalData()
7 Set hf ← bi− directional
8 Set IDint ← {0, 1}k

9 Send (hf‖IDint‖Data) to the mix server

10 Upon Receiving D from mix server over the secure
channel
begin

11 Send D to the user

Protocol 3 CoverUp (r): CoverUp server side
computation
1 Upon Receiving a request r from a browser BI/V

begin
2 code ← JavaScript code snippet
3 Send code to BI/V

Protocol 4 mix server(hf ) : the mix server side
constant time computation
1 Upon Receiving (hf‖IDint‖Data) from the secure

channel
begin

2 FixedExecutionT ime← x

3 start← timeNow()
4 if hf = bi− directional then
5 Initialize state with IDint

6 if stateExists() = TRUE then
7 Set state← getState(IDint)

D ← covertData(state,Data)
8 Call UpdateState(state)

9 else
10 D ← broadcast

11 Sleep for (x− (timeNow()− start))
12 Send D over the secure channel

Game 1
1 Ch: Upon Receiving (m, p) from A for client

begin
2 if p = u & m = (Command(m1),Command(m2))

then
3 if b = 0 then
4 Send (Command(m1),Command(m2)) over

u to Browser(φ)
5 else
6 Send (Command(m1),Command(m2)) over

u to Browser(φ)

7 else
8 Send m over p to Browser(φ)

9 π1
I : Upon receiving a bi-directional request R from ωU

begin
10 RequestQueue.push(R)

Game 2
1 π2

V : Upon Initialization at Ch side
begin

2 Data← readBiDirectionalData()
3 Set hf ← bi− directional
4 Set IDint ← {0, 1}k

5 Send (hf‖IDint‖Data) to the mix server

the timing leakage of πI+Γ and πV is 0 for any sampling
rate.

Game 0 is defined as Ch(πI , tnet, tuser) which is the
challenger choosing protocol with only feed capabil-
ity (no interactive capability supported). Where as
Ch(πV , tnet, tuser) is the challenger who picks protocol
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Game 3
1 π3

V : Upon Receiving a request R = (hf‖IDint‖Data)
at the mix server side
begin

2 D ← mix server(hf ) (the Protocol 4 for the mix
server)

3 Send D to Ch

instance supporting interactive communication (brows-
ing and chatting). We assume that the operation that
performs on RequestQueue introduces ∆0 delay. Read-
ing of bi-directional data from the external application
imposes ∆1 delay and modifying variables in the re-
quest payload introduces ∆2 delay. We define Si to be
the number of operation executed in game i and Pr[Si]
denotes the probability that an attacker can distinguish
game i by observing the total execution time.

Game 1-3 introduce small modification over base
protocol, i.e., the broadcast channel. Every game add
some small timing delay ∆ to the previous game which
is the only information available to A. Henceforth we
define the following notations

Notation 1.

Pr[Si + ∆] := Pr[0← 〈A | Game i with delay ∆〉]

Notation 2.

Pr[Si −∆] = Pr[Sj ] :⇐⇒ Pr[Si] = Pr[Sj + ∆]

We have also used the following relation throughout our
proof which can be proved easily.

Pr[Sj ] = Pr[Si + ∆] ∧ Pr[Si] = Pr[Sk + ∆′]
⇐⇒ Pr[Sj ] = Pr[Sk + ∆ + ∆′]
Pr[Si + ∆] = Pr[Sj + ∆ + ∆′]
⇐⇒ Pr[Si] = Pr[Sj + ∆′] (trivial using Notation 2)

9.3.1 Game 0 and Game 1

Game 1 only include one operation on RequestQueue
which imposes ∆0 timing delay. Hence

Pr[S1] = Pr[S0 + ∆0].

Pr[S0]
Pr[S1] = Pr[S0]

Pr[S0 + ∆0]

9.3.2 Game 1 and Game 2

Game 2 adds the request intercept which executes in
the browser extension at client side. This includes one
call to readBiDirectionalData() method which reads
bi-directional data sent by the external application.
This incurs ∆1 timing delay. Moreover Game 2 adds
statements which modify the payload content such as
the header hf to bi− directional and data field to the
bi-directional request. This introduce ∆2 timing delay.
Remember that ll the communications are done via a
secure channel, and all the modification of the packet
data ensures constant data size. Hence we can ensure
indistinguishability in spite of the data modification.

Pr[S2] = Pr[S1 + ∆1 + ∆2].

Pr[S1]
Pr[S2] = Pr[S1]

Pr[S1 + ∆1 + ∆2] = Pr[S1]
Pr[S0 + ∆0 + ∆1 + ∆2]

9.3.3 Game 2 and Game 3

In Game 3 all the statements remain same, only the pa-
rameter to the reactive machine mix server(hf ) changes
as the Ch now sends bi− directional as the packet header.
As mix server(hf ) guarantees constant time execution
irrespective of the input parameter, Game 3 does not
introduce any additional timing delay.

Pr[S3] = Pr[S2 + ∆1 + ∆2].

Pr[S2]
Pr[S3] = Pr[S2]

Pr[S2 + ∆1 + ∆2] = Pr[S2]
Pr[S0 + ∆o + ∆1 + ∆2]

Proof. Game 3 adds total ∆1 + ∆2 delay (cu-
mulative from Game 1 to 3) to Game 0 or
Ch((πI), noise, Tuser, Tnet). Hence

Pr[S3] = Pr[S0 + ∆0 + ∆1 + ∆2] (eq 2)

holds from eq 1

Lemma 3. Game 3 is equivalent to the challenger
Ch(πV , Tuser, Tnet) who picks the CoverUp instance
with covert communication mode.

Pr[S3] = Pr[0← 〈A | Ch(πV , tuser, tnet)]

Proof. From Lemma 2 we get Pr[S3] = Pr[S0 + ∆0 +
∆1 + ∆2]
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S0 = Step(φ+ πV ) = Step(πV )
S3 = Step(π3

I ) = Step(πV ) + ∆0 + ∆1 + ∆2

Pr[S3] = Pr[S0 + ∆0 + ∆1 + ∆2] (from eq 2)

Pr[S3] = Pr[0← 〈A | Game 3〉]
= Pr[0← 〈A | Game 0 + ∆0 + ∆1 + ∆2〉]
= Pr[0← 〈A | Game 0 + ∆〉]
= Pr[0← 〈A | Ch(πI , tuser, tnet) + ∆〉]
= Pr[0← 〈A | Ch(π3

I , tuser, tnet)〉]
= Pr[0← 〈A | Ch(πV , tuser, tnet)]

10 Related work
Extending the anonymity set via JavaScript.
There are previous research works on utilizing visitors
of a collaborating website to produce anonymizing cover
traffic via JavaScript. Conscript [42] and Adleaks [63]
describes upload only uni-directional channel from the
users to the mix network. In contrast, CoverUp pro-
vides a transport private bi-directional channel. The pa-
per mentioned timing leakage based side channel at-
tacks but evaluation details are missing except power
consumption. In contrast to CoverUp, Conscript addi-
tionally has deployment hurdles, since it trusts the en-
try server to achieve code integrity. While previous work
suggests mitigating this trust assumption by letting the
extension check all dynamic content to achieve code in-
tegrity against a malicious entry server, such dynamic
checks will tremendously increase the timing leakage,
and thus rendering the active participants clearly dis-
tinguishable from passive ones. The need to trust the
entry server gives the entry server more responsibility
and requires a careful evaluation of the entry servers. All
the users of Adleaks who opens the specific website exe-
cute the JS provided by the advertisement banner. The
implementation of Adleaks requires a patched version of
the browser. This reduces the set of possible browsers
and therefore reduces the anonymity set massively. De-
tailed privacy analysis is not described in the paper in-
cluding timing leakages. The paper [33] describes how to
include unwilling users to cover server to server commu-
nication. All transport between the servers (by passive
clients) is not encrypted. This means an inspection of

the HTTP body reveals intention. Moreover, the paper
lags any implementation details. Additionally, previous
works lacks a legal aspects discussion of “forced” par-
ticipation (see Section 7).

Transport privacy. Ungers et al. in the SoK pa-
per [66] provided comparison of different transport-
private ACNs and compared their privacy, usability and
adaptation properties. Section 2.2.1 provides detailed
discussion on the compatibility of CoverUp with dif-
ferent ACNs.

Anonymous communication protocols. There
are numerous approaches to hide a user’s traffic. Anony-
mous communication (AC) protocols hide traffic by
rerouting and potentially waiting. Low-latency AC pro-
tocols, such as Tor [48] or Hornet [40], are vulnerable to
traffic correlation attacks. High-latency mix-nets, such
as Mixminion [46], which do not require the user client
to continuously send messages to leak a user intend to
connect to the anonymity network, which might seem
suspicious and prevent a user from using the mix-net
client. AC protocols that do require the user client to
continuously send messages, such as DISSENT [43] or
Vuzuvela [67], still require the active participation of the
users in the protocol, which can leak the intention. Our
solution can be easier deployed and does not require a
sophisticated infrastructure.

Ricochet is a related project: an anonymous chat.
Based on Tor’s hidden service design, Ricochet imple-
ments a privacy-preserving instant messenger. As Rico-
chet is based Tor, it suffers from Tor’s weaknesses, such
as traffic correlation attacks and website fingerprinting.
As our system is a constant-rate communication system,
CoverUp does not suffer from these kinds of attacks.
Tor and thus Ricochet leak that a user intends to use
Tor. CoverUp’s indistinguishability of active and pas-
sive participants enables users to deny the intention to
participate in the system.

Covert channels & steganography. Covert
channels hide whether communication took place, and
thus achieve full deniability. As covert channels typi-
cally use a piggyback approach to transport data, they
depend on existing data streams, resulting in a de-
pendency of the piggybacked system for latency and
throughput. Steganography is another approach which
is hiding messages in unsuspicious looking data [30, 50,
56]. But once detected, the origin, thus the intention, is
obvious. The same applies to Mixing [57]. Off-the-record
messaging publishes the MAC key after each talk, ren-
dering it vulnerable against real-time monitoring [35].

McPherson et al. proposed CovertCast, a broad-
cast hidden in normal video streams like YouTube [59].
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Che et al. were able to create a deniable communication
channel based on different levels of noisy channels [39].
Deploying that system is, however, require a much
higher effort by the service provider (e.g., YouTube)
and does not provide any interactive communication
like CoverUp. Freewave [55] provides a covet channel
where the user can modulate his internet traffic signal
into acoustic data and transfer it to a remote server via
VoIPs such as Skype. Such system has bandwidth lim-
itation and is vulnerable to attacks described in [52].
SWEET [70] describes a covert channel e-mail commu-
nication where the user can send the query to the re-
mote server by using any available mail server. Such
system suffered from very low bandwidth and high la-
tency, making them practically infeasible for deploy-
ment. CloudTransport [37] introduced covert commu-
nication which involves publicly accessible cloud servers
such as Amazon S3 which acts as the oblivious mix. But
services like this does not provide protection against
attackers learning intention. Infranet [51] describes a
system executing covert communication using image
stenography but also suffers from a low bandwidth.

11 Conclusion
We discussed how Passive Participation can im-
prove the privacy of anonymous communication net-
work (ACNs).By adding passive participants to the
anonymity set, we achieve not only an increased
anonymity set but also a participation deniability: an
attacker cannot tell whether an observed communica-
tion stream originates from an active or a passive par-
ticipant. We experimentally evaluated the degree of pri-
vacy for our prototype implementation of CoverUp for
CU:Messenger and CU:Feed and found that the timing
leakage is acceptable even under half a year of continual
observation. Even vor a state-level agency half a year of
continual observation (on sub-ms-level granularity) of a
single party incurs a significant cost. This approach of
Passive Participation can help to bootstrap mid- and
high-latency ACNs.

An interesting direction for future work would be
measuring the changes in an active user’s behavior to-
wards the entry server via a user study.

Our evaluation of the timing leakage of CoverUp
(Section 5) shows that the browser extension, used
for the bi-directional channel, has some timing leak-
ages. After many careful observations and experiments,
we conjecture that the timing leakages arises from

the browser’s internal scheduler. The extension oper-
ates through several layers of heavy abstractions which
makes it non trivial to develop extensions which are such
timing sensitive in nature. We think that a set mod-
ifications in the browser code will solve such problem
where all the modifications can be implemented on na-
tive code rather than high level abstraction (such as the
JavaScript based API). Such modification is nontrivial
and requires a high amount of engineering effort, mak-
ing it out of scope for our current research. But such
modification can be an immediate followup of this work
and would be a major contribution towards privacy pre-
serving browsing applications.
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A TUC: A time-sensitive model
for networks of machines

For quantifying the privacy guarantees of CoverUp,
we use the TUC framework as a time-sensitive model
for network of machines. TUC constitutes a model for
networks of machines that is time-sensitive. In TUC,
time is represented as a rational number, and there is a
global time, on which the time of each machine depends.
Each machine has a local clock that is a function t in the
global time. This function represents potential delays or
inaccuracies of the local timer. Moreover, TUC assigns
to each machine a speed s. Hence, a machine is after c
step at the global time c/s and the local timer of that
machine shows t(c/s).

The execution of a network of machines in TUC
is conducted by a single machine, called the execu-
tion, that runs all participating machines as subma-
chines. This execution sequentially activates each ma-
chine, counts the steps that each machine performs, and
coordinates the timely sending and receiving of mes-
sages between the submachines. Due to the sequential
activation of machines, it can happen that one machine
is already far in the future compared to all other ma-
chines. It is shown [32] that all reasonable activation
strategies lead to the same results. As a consequence,
we ignore that TUC internally uses sequential activa-
tion and treat all machines as if they are executed in
parallel and run according to their speed.

A party can consist of several parallel machines
(e.g., several CPUs) that communicate to each other.

A.0.1 Timeless environment and attacker

As in the UC framework, TUC includes an environment
and an adversary. This environment and this adversary
can consist of several machines that work in parallel.
A natural way of modeling this capability is to rep-
resent the environment and the adversary as a set of
parallel machine. While such a model is more accurate,
we decided for the sake simplicity to over-approximate
this strength of the environment and the adversary by
allowing both parties to make an arbitrary (but poly-
bounded) amount of computation steps in one time-
step.
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A.0.2 Internet topology

As in the UC framework, TUC models how two ma-
chines directly communicate to each other. The internet
can, thus, be represented by a network of intermediary
machines that (if honest) relay the message from the
sender to the destination. A partially global attacker
can, of course, compromise several of these machines.
Hence, we can abstract this network of machines by the
information which connections between protocol parties
leaks the message to the attacker. In addition to the pre-
vious model, we additionally need to specify the delay
of the network, i.e., how much time the connection be-
tween two parties takes.
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